

Informe Estado de Desarrollo Laboratorio Vegetal Las Salinas

Período: Otoño 2019

"Si sirves a la naturaleza, ella te servirá a ti."

Confucio

En un mundo donde más de la mitad de la población vive en zonas urbanas, los espacios naturales

son cada vez más escasos.

Sin embargo, urbanismo y naturaleza pueden y deben ser complementarios, ya que integrar el

patrimonio natural al suelo urbano, permite generar sostenibilidad y mejorar la calidad de vida de

las personas.

Además, la integración de flora nativa permite enfrentar de mejor manera la adaptación al cambio

climático, gracias a la restauración de ecosistemas propios de la zona.

Con este propósito hemos creado el Laboratorio Vegetal, una iniciativa pionera a nivel regional, que

busca recrear a pequeña escala un tipo de piso vegetacional característico de la V región para

promover su rehabilitación en el espacio público urbano.

El biólogo de la PUCV, experto en diagnósticos ambientales estratégicos y proyectos de

conservación, ha estado por más de un año monitoreando la evolución de los pisos vegetacionales

que componen el Laboratorio Vegetal y, a continuación, nos presenta un nuevo y completo informe.

Atentamente,

Equipo Las Salinas

ÍNDICE DE CONTENIDO

1.	1. INTRODUCCIÓN	2
2.	2. OBJETIVOS	3
2.	2.1. OBJETIVO GENERAL	3
2.	2.2. OBJETIVOS ESPECÍFICOS	3
3.	3. METODOLOGÍA	4
3.	3.1. METODOLOGÍA DE MUESTREO	4
3.	3.2. PROCESO METODOLÓGICO DE GABINETE:	6
3.	3.3. VALOR DE IMPORTANCIA (VI)	10
3.	3.4. DETERMINACIÓN DE LA DIVERSIDAD BIOLÓGICA DEL LABORATORIO VEC	SETAL (LV)10
3.	3.5. INDICADOR DE CRECIMIENTO	11
4.	4. RESULTADOS Y DISCUSIÓN	13
5.	5. CONCLUSIÓN	15
6.	6. BIBLIOGRAFÍA	17
7.	7. ANEXO 1	20
	ÍNDICE DE TABLAS	
TABL	TABLA 1: VALORES DE VOLUMEN VEGETAL POR ESPECIE PARA CADA PARCELA CENSAI	DA20
	Tabla 2: Determinación del volumen vegetal por cada individuo censado	
TABL	Tabla 3: Valor de Importancia (VI) para cada especie presente en el LV $$	24
TABL	Tabla 4: Comparación de los índices de biodiversidad utilizados para el pe	RÍODO DE VERANO 2019 Y OTOÑO 201925
TABL	Tabla 5: Comparación de los volúmenes obtenidos en las campañas de ve	RANO Y OTOÑO DEL 201926
TABL	Tabla 6: Índice de crecimiento alcanzado en base al volumen vegetal dur	ANTE LOS CONTROLES REALIZADOS27

ÍNDICE DE GRÁFICOS

GRÁFICO 1: COMPARACIÓN DE LOS VI EN LOS DISTINTOS CONTROLES ESTACIONALES REALIZADOS
Gráfico 2: Comparación de los VI según clasificación Raunkiaer
GRÁFICO 3: COMPARACIÓN DEL ÍNDICE H' Y J DURANTE LOS DISTINTOS PERÍODOS ESTACIONALES CONTROLADOS
ÍNDICE DE IMÁGENES
IMAGEN 1: ÁREA DE ESTUDIO Y PLANIFICACIÓN DE VUELO EN APLICACIÓN DRONEDEPLOY
IMAGEN 2: UBICACIÓN DE LOS PUNTOS DE CONTROL EN AGISOFT METASHAPE
Imagen 3: Visualización de la malla y corrección de la curvatura mediante georeferenciación en Agisoft Metashape 7
Imagen 4: Visualización de la medición sobre el MDE y el ortomosaico en Agisoft Matashape
IMAGEN 5: CARTOGRAFÍA CENITAL DE LA PARCELA 29
ÍNDICE DE FOTOGRAFÍAS
FOTOGRAFÍA 1: MDE PARA P-2
Fotografía 2: MDE para P-3
Fotografía 3: MDE para P-4
Fotografía 4: MDE para P-5
Fotografía 5: MDE para P-6
Fotografía 6: MDE para P-7
FOTOGRAFÍA 7: MDE PARA P-8
Fotografía 8: MDE para P-9
Fotografía 9: MDE para P-10

ÍNDICE DE ECUACIONES

ECUACIÓN 1	10
ECUACIÓN 2	11
ECUACIÓN 3	
ECUACIÓN 4	11
ECUACIÓN 5	11
ECUACIÓN 6	11
ECUACIÓN 7	12
ECUACIÓN 8	14

Laboratorio Vegetal Las Salinas Preparando el dormir

INFORME PERÍODO DE OTOÑO 2019

Preparando el dormir

Laboratorio Vegetal Las Salinas

Autor: Salvador Donghi R.

Fotografía de portada: Palo negro (*Heliotropium stenophyllum*) en el término de su período de floración. Fotografía de S. Donghi.

1. INTRODUCCIÓN

La existencia de espacios naturales en la ciudad genera grandes oportunidades de desarrollo debido a que ellos concentran múltiples recursos y se asocian a actividades complementarias al funcionamiento de las grandes ciudades (Araneda & Sierra 2013, Naranjo 2009). Además, su conservación implica la protección de los bienes y servicios asociados a ellos, promoviendo así la sostenibilidad territorial y el aporte a la calidad de vida de la población.

Por otro lado, se reconoce la necesidad de conservar aquellos espacios naturales en los que se desarrollan las actividades cotidianas del ser humano de manera paralela a la conservación de otras áreas de importancia que hayan sido designadas como áreas protegidas, debido a que los hábitats de muchas especies, especialmente de aves, se extienden fuera de los límites de las áreas protegidas ocupando áreas naturales dentro de las ciudades (Díaz & Armesto 2003).

En este contexto, varios estudios indican que la disponibilidad de elementos del ambiente apropiados para la nidificación, alimentación y refugio suelen determinar la presencia de aves (Berry 1990, Newton 1994). Por ejemplo, Díaz & Armesto (2003) observan que la cantidad de follaje y la composición de los árboles se relaciona con la riqueza de avifauna de espacios naturales de Santiago, indicando que el diseño de parques, plazas y jardines que privilegie la presencia de áreas verdes forestadas con plantas y árboles favorables para las aves, y que permita que los árboles desarrollen un dosel frondoso puede aumentar la riqueza de aves terrestres en la ciudad, haciendo posible la conservación de aves nativas en los espacios urbanos de Santiago.

Sin embargo, el aumento de la biodiversidad en espacios naturales insertos en la ciudad no es el único beneficio asociado a la existencia de estas áreas, por ejemplo, algunos autores señalan que existe una correlación positiva entre un aumento de la biodiversidad de los ecosistemas urbanos y la conciencia ambiental de su población, debido q que la población adquiere mayor sensibilidad ante los problemas relativos a la protección del medio ambiente (Sebba 1991, Rohde & Kendle 1994). Por esta razón, la tendencia a nivel global es a propiciar la asociación del crecimiento urbano y las estrategias de desarrollo del territorio a la conservación del estado natural del paisaje.

Como ha sido establecido previamente, el Laboratorio Vegetal de Las Salinas (LVLS), busca concitar un número de especies vegetales que caracterizan los pisos vegetales costeros de la región de Valparaíso de manera de generar nodos representativos que permitan articular una trama ecosistémica que provea a la ciudad de bienes, servicios y fenómenos.

El presente informe da cuenta del estado de desarrollo del LVLS mediante el desarrollo de un índice de crecimiento que considera el desarrollo vertical de las especies vegetales, junto a índices de Importancia Vegetal (VI) y de biodiversidad, comparando estos resultados con los obtenidos previamente en las campañas realizadas.

2. OBJETIVOS

2.1. OBJETIVO GENERAL

Optimizar el polinomio de evaluación de manera de incorporar el crecimiento en altura que permitan evidenciar su desarrollo en períodos prolongados de tiempo.

2.2. OBJETIVOS ESPECÍFICOS

- 2.2.1. Elaborar un Modelo Digital de Elevación (MDE) mediante la utilización de fotogrametría.
- 2.2.2. Cuantificar el estado de desarrollo del LVLS mediante la aplicación del índice de crecimiento δ.
- 2.2.3. Evidenciar los porcentajes de volumen vegetal alcanzado por todas las especies vegetales que conforman el LVLS desde el verano al otoño del 2019.
- 2.2.4. Cuantificar el estado de desarrollo mediante la aplicación de índices de biodiversidad.
- 2.2.5. Determinar qué parcela de muestreo reúne condiciones de representatividad para utilizarla como patrón de replicación.

Laboratorio Vegetal Las Salinas Preparando el dormir

3. METODOLOGÍA

3.1. Metodología de muestreo

El muestreo del LVLS se realizó en las nueve parcelas ya trazadas en estudios anteriores. El tamaño de cada una es variable y está especificado para cada parcela. Se trabajó con la identificación de cada especie y registro de distribución espacial desarrollado anteriormente, sobre el cual se determinó el volumen vegetal de cada especie a través fotogrametría RPAS¹.

3.1.1. Terreno y planificación de vuelo

Durante el mes de junio se llevó a cabo el levantamiento de la información en terreno mediante un plan de vuelo con fotos cenitales y orbitales para generar información en 3D mediante la utilización de un Dron Phamtom 4 Standard de DJI. Este posee una cámara de 12,4 megapíxeles (suficiente para realizar fotogrametría) y un GPS de navegación que tiene un margen de error de 72 cm.

El vuelo se realizó cerca del mediodía, ya que en sol está más cenital y se evitan la generación de sombras pronunciadas, siendo este momento la condición óptima para el levantamiento de datos.

Se ubicaron puntos de control en distintos sectores del área de trabajo y se georreferenciaron con GPS de navegación Garmin GPSMAP 64s. Este tipo de georreferencia mejora el modelo y lo amarra en sus ejes X, Y y Z para corregir el GPS autónomo del RPAS con lo cual se corrige su margen de error.

En terreno se ejecuta una planificación de vuelo autónoma, trazando un polígono que cubra toda el área de interés. El RPA seguirá una grilla o ruta dentro de este polígono y sacará fotos a medida que avanza por ella. Luego de trazado el polígono, se ingresan los parámetros de traslape o solape, configurado al 75%² de overlap y sidelap.

¹ Del inglés Remotely Piloted Aircraft: aeronave piloteada a distancia

² Valor recomendado para levantamientos fotogramétricos de este tipo.

Laboratorio Vegetal Las Salinas Preparando el dormir

Se configura la altura de vuelo a 20 metros, siendo el valor mínimo que permite la aplicación para lograr una mejor resolución espacial, alcanzando el centímetro por pixel. La misión de vuelo cubrió 1 hectárea y tuvo una duración de 9 minutos obteniendo 216 imágenes (Imagen 1).

Luego la cantidad de información se mejora con tomas laterales para lograr mejor elaboración en el volumen del modelamiento. Con estas fotos y los puntos GPS se ejecuta el proceso metodológico para realizar las mediciones sobre el modelo.

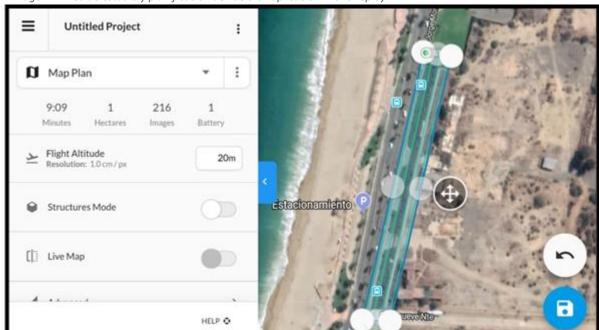


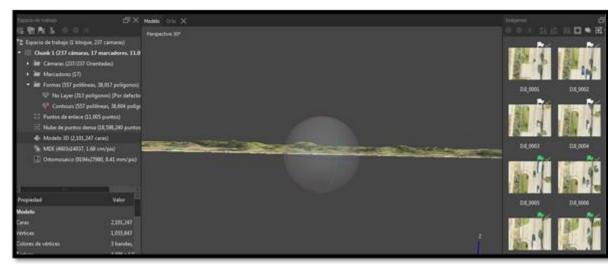
Imagen 1: Área de estudio y planificación de vuelo en aplicación DroneDeploy

Laboratorio Vegetal Las Salinas Preparando el dormir

3.2. Proceso Metodológico de gabinete:

A partir de la alineación de imágenes, se ingresan los parámetros en calidades altas de procesamiento para mejorar la prestación de los datos. De este proceso se obtiene una nube de puntos dispersa, se ingresan los puntos de control o puntos de apoyo y se toma la georreferencia proporcionada por el GPS (Imagen 2Error! Reference source not found.).

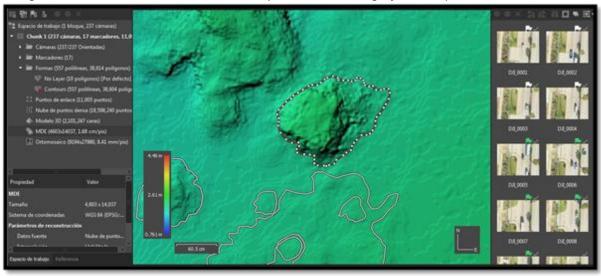
Imagen 2: Ubicación de los puntos de control en Agisoft Metashape

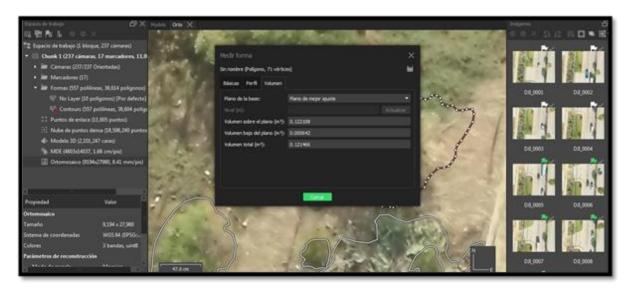

Es pertinente aclarar que la georreferencia corrige de buena manera la deformación estereoscópica del lente de las cámaras, dejando el levantamiento fotogramétrico como una lámina plana y delgada sobre la cual es posible calcular los volúmenes (Imagen 3). Esto debido a que el módulo de mediciones del software se ajusta sus mediciones al piso medio del modelo, de este modo, todas las mediciones de volúmenes o áreas estarán en referencia al piso medio y sujeto a tres condiciones generalmente:

- a) calidad de la cámara o sensor (resolución),
- b) método de georreferencia (GPS autónomo, GPS navegador, RTK o GPS geodésico) y
- c) condiciones propias del terreno y de los objetos a medir, como, por ejemplo: problemas en las condiciones de obtención de imágenes, mal tiempo, exceso de sombras y objetos difusos que son difíciles de modelar correctamente.

Laboratorio Vegetal Las Salinas Preparando el dormir

Imagen 3: Visualización de la malla y corrección de la curvatura mediante georeferenciación en Agisoft Metashape


Después de ajustar el modelo y georreferenciarlo se generan:


- a) la nube de puntos densa,
- b) el modelo digital de elevaciones (MDE),
- c) la malla y
- d) el ortomosaico,

Con estos insumos se procede a realizar las mediciones, específicamente sobre el MDE, usando la malla y el ortomosaico como referencia en RGB (visión de colores reales) para poder distinguir las especies vegetales y trazar polígonos de medición (Imagen 4).

Laboratorio Vegetal Las Salinas Preparando el dormir

Imagen 4: Visualización de la medición sobre el MDE y el ortomosaico en Agisoft Matashape

En primera instancia el levantamiento presentó algunas sombras leves las cuales se reflejaron en el ortomosaico, sin embargo, estas no afectan al MDE, debido a la corrección que se produce a partir de las fotos orbitales tomadas posteriormente de ejecutado el plan de vuelo.

Si bien los objetos a medir eran el desafío, muchas plantas compartían espacio, debido a la superposición que presenta cualquier desarrollo vegetal cuando está constituido por más de dos especies, lo que hace difícil medir sus volúmenes de manera individual y también dificulta la distinción

Laboratorio Vegetal Las Salinas Preparando el dormir

de ellas. Gracias al apoyo visual de la cartografía cenital (Imagen 5) prestada para la distinción de estas especies, se logra trazar correctamente los polígonos de medición.

Usando la cartografía cenital, se identifican cada una de las especies para el trazado de los polígonos de medición por especie usando; el ortomosaico como referencia visual y el MDE como referencia altimétrica y de volumen.

Los resultados de las mediciones son tabulados en planilla Excel, para luego sumar los resultados individuales, obteniendo así el valor de volumen total por especie en cada parcela expresado en metros cúbicos.

Imagen 5: cartografía cenital de la parcela 2

Laboratorio Vegetal Las Salinas Preparando el dormir

3.3. Valor de importancia (VI)

El VI se calculó a partir de la Tabla 1 . Se determinaron los VI (Tabla 3), tanto para las áreas como para los volúmenes calculando las frecuencias y volúmenes relativos de cada especie en todos los censos (Wikum & Shanholtzer G.F., 1978). La frecuencia relativa se obtuvo sumando las frecuencias absolutas (censos en que están presentes) de todas las especies, llevando el total obtenido a 100 y determinando el porcentaje de este total que le corresponde a cada una. Del mismo modo se determinó el volumen relativo, sumando los volúmenes de todas las especies en los censos en que están presentes, llevando el total a 100 y determinando el porcentaje que le corresponde a cada especie. Al sumar la frecuencia relativa con el volumen relativo de cada especie se obtiene el VI (Tabla 3), cuya máxima expresión sólo puede alcanzar a 2,00.

3.4. Determinación de la diversidad biológica del Laboratorio Vegetal (LV)

Para la determinación de la diversidad biológica del LV se utilizó el índice de Shannon-Wiener. A diferencia de los informes anteriores, el índice fue determinado para los valores obtenidos sólo con el volumen. Se mantiene las mismas fórmulas utilizadas, siendo estas:

$$H' = \sum_{i=1}^{S} p_i \ln(p_i)$$
 Ecuación 1

Donde:

 p_i : Frecuencia relativa de cada especie

S: Número de especies

El índice H' tenderá al máximo cuando todas las especies tiendan a estar igualmente representadas (Pla, 2006), lo que se puede expresar como:

Laboratorio Vegetal Las Salinas Preparando el dormir

$$H'max = ln_2S$$
 Ecuación 2

A partir de la ecuación anterior será posible calcular el índice de equitatividad o proporcionalidad, siendo el más utilizado el índice de Pielou (1969):

$$J' = \frac{H'}{ln_2S}$$
 Ecuación 3

Lo que en definitiva es igual a:

$$J' = \frac{H'}{H'max}$$
 Ecuación 4

Los valores obtenidos para los índices H', H' max y J' se muestran en la Tabla 4.

3.5. Indicador de crecimiento

En base a los nuevos cálculos y a lo determinado en el informe INF-EYP-004-ANEXO se modifica el indicador de crecimiento el cual considera el volumen de cobertura alcanzado por cada parcela censada y la abundancia de especies (*S*) presentes según la siguiente ecuación:

$$q_z = \frac{m^3 P_i}{m^2 \ totales \ P_c}$$
 Ecuación 5

Donde:

 m^3P_i = ${\rm m^3}$ de cobertura vegetal total de cada parcela i descrita.

 $m^2 totales P_c = m^2$ se superficie total de las parcelas censadas.

Por lo tanto, el q_i tendrá la siguiente fórmula:

$$\sum_{i=1}^{n} q_z = (q_z + q_{z+1} + q_{z+2} + \dots + q_n)$$
 Ecuación 6

Laboratorio Vegetal Las Salinas Preparando el dormir

De este modo, el indicador δ estará dado por;

$$\delta = \left[\sum_{i=1}^{n} q_{z}\right] \kappa$$
 Ecuación 7

Siendo:

 $\kappa = \frac{S}{S'}$; Cociente entre S (número de especies presentes) y el S' proyectado (número de especies totales consideradas en el laboratorio).

De manera de poder llevar un registro histórico de crecimiento, agrega también el indicador δ para las coberturas vegetales alcanzadas por parcela.

4. RESULTADOS Y DISCUSIÓN

Mediante la utilización del MDE es posible determinar con cierta precisión los volúmenes vegetales de cada especie presente en las nueve parcelas censadas (Tabla 5). Los resultados obtenidos mediante el MDE (campaña de otoño 2019) muestran que estos son muy disímiles en comparación a los obtenidos a través de la determinación teórica (campaña de verano 2019), sin embargo, los valores de importancia (VI) determinados para *Haplopappus foliosus* y *Eryngium paniculatum* siguen estando dentro de los cuatro valores más altos, otras especies como *Stipa caudata* y *Nolana pullally* no tuvieron la representatividad de ocasiones anteriores (Gráfico 1), además, especies como *Baccharis macraei*, *Schinus latifolius* y *Solanum maritimum* muestran que a través del MDE se obtienen valores mayores que los estimados teóricamente.

El Gráfico 2 muestra como las especies caméfitas, con excepción de *Puya sp. y Stipa caudata* tiene VI (obtenidos a través de la determinación del volumen vegetal) mayores durante la medición de otoño 2019 que los del verano 2019. El mismo gráfico muestra que los valores obtenidos en las geófitas son bastante similares entre ambas campañas, con excepción de los cubre suelos como *Nolana crassulifolia*, *Nolana pullally* y *Frankenia salina*, las cuales tienen valores inferiores. Para el caso de las especies Fanerófitas estas muestran valores levemente superiores en la campaña de invierno 2019 que en la campaña de verano 2019, como sería el caso de *Eryngium paniculatum* y *Lobelia excelsa*.

El MDE usado en la campaña de otoño 2019 muestra que el índice de biodiversidad (H') ha mejorado en todas las parcelas -excepto en P-3 y P-8- respecto de la campaña anterior (Tabla 4), con lo cual se logró incrementar levemente el índice J' (Gráfico 3), con la fuerte excepción de P-3 ya la equidad vegetacional al interior de la parcela disminuyo drásticamente. Una de las posibles razones es que *Haplopappus foliosus* está sobre representado en esta parcela, tal como es posible evidenciarlo en la Tabla 2.

A partir de la Tabla 1 se calculó el índice de crecimiento para el período de otoño 2019, para el volumen vegetal.

Mediante los *qi* determinados y presentados en la Tabla 6 se realizaron los cálculos según las siguientes ecuaciones:

Laboratorio Vegetal Las Salinas Preparando el dormir

Índice δ a partir de los valores de cobertura vegetal:

$$\delta = (0.0245) * \frac{25}{26}$$

 $\delta = (0.0245) * 0.96153884$

 $\pmb{\delta} = \pmb{0}, \pmb{02355}$

Ecuación 8

Laboratorio Vegetal Las Salinas Preparando el dormir

5. CONCLUSIÓN

Desde la campaña de verano 2019 se ha estado trabajando en distintos modelos que permitan determinar el volumen vegetal, y así obtener un índice de crecimiento que incluya la elevación como variable de análisis. La determinación de los volúmenes constituye una alternativa de mejora, debido a que permite desarrollar un indicador que puede ser usado por tiempo prolongado, lo cual no es posible de conseguir con la medición de las coberturas, ya que estas se encuentran determinadas por el tamaño de las parcelas de muestreo.

En las campañas anteriores, los volúmenes vegetales se determinaron por medio del crecimiento vertical a partir de la incorporación de una nueva variable que incluía el desarrollo en altura que tienen aquellas especies clasificadas como Fanerófitas, Microfanerófitos y Nanofanerófitas con la precaución que las alturas asignadas a las geófitas no alteraran el VI que ellas tienen. Sin embargo, los resultados obtenidos -en ese momento- no fueron concluyentes, ya que asumía previamente que todas las especies tienen desarrollo de copas, y que todas ellas son cilíndricas, lo cual conforma un error de generalización. A partir de esta consideración nace la idea de generar una nube de puntos que permita la proyección superficial de todos los puntos georreferenciados en coordenadas XY y el eje Z, y así generar una malla en tres dimensiones de geometría triangular (TIN) que permite obtener un modelo digital de elevación (MDE).

Mediante la aplicación del MDE es posible evidenciar como los VI para las especies catalogadas como caméfitas son superiores a los resultados obtenidos en las campañas anteriores, siendo sólo *Stipa caudata* la que presenta valores inferiores, ya que había sido podada poco tiempo antes de realizar la fotogrametría. Las especies catalogadas como Fanerófitas (Microfanerófitos y Nanofanerófitas)³ también muestran que los VI son superiores a los obtenidos en el pasado, demostrando que aquellas especies cuyos renuevos están por sobre el suelo desarrollan formas

-

³ Dentro de la clasificación de Raunkiaer se distinguen las Fanerófitas y corresponde a una categoría que incluye a todas las plantas leñosas o herbáceas vivaces (árboles, arbustos, cañas o grandes hierbas) cuyas yemas de renuevo se encuentran en vástagos por encima de los 25 cm de distancia del suelo. Dentro de esta categorías se distinguen las siguientes subcategorías: Nanofanerófitos (< 2m), Microfanerófitos (2 − 10 m), Mesofanerófitos (10 -22), Macrofanerófitos (22 − 50) y Megafanerófitos (>50 m)

Laboratorio Vegetal Las Salinas Preparando el dormir

volumétricas que no es posible interpretarlas a través del cilindro, confirmando entonces el error de generalización. Por otro lado, las especies consideradas como geófitas, presentan VI inferiores a los obtenidos en la campaña anterior, destacando principalmente *Nolana pullally, Nolana crassufolia, Frankenia salina* (todas ellas rastreras) y *Cistanthe grandiflora*. Esta diferencia se debe principalmente al bajo desarrollo vertical que tienen este tipo de especies presentes en el LV, donde el desarrollo de su cobertura es su principal característica.

Cabe destacar que los resultados obtenidos con los índices H' y J' mostraron una sostenida alza en sus valores, dando a entender que cada una de las parcelas censadas tiene una distribución homogénea al interior de su comunidad, siendo la excepción la P-3, la cual descendió en ambos índices debido al considerable desarrollo volumétrico alcanzado por *Haplopappus foliosus*, lo que provocó un fuerte efecto en la representatividad de las especies al interior de la parcela.

Como se ha planteado en informes anteriores, es necesario considerar el desarrollo del volumen vegetal como variable de crecimiento, producto del límite que impone el tamaño de la parcela de muestreo a la cobertura vegetal. En esta oportunidad se utilizó fotogrametría para obtener un MDE, lo que generó resultados que permitirían un mejor desempeño del índice de crecimiento, debido a la obtención de un valor de volumen que mejor representa a cada una de las especies, sobre todos de aquellas consideradas como Fanerógamas, Caméfitas y Hemicriptófitas (según clasificación de Raunkiaer).

Si bien los resultados obtenidos son esperanzadores, estos aún requieren de un mayor análisis que permita optimizar la consideración de las geófitas, esto porque la determinación de sus volúmenes será mayoritariamente inferior al valor de sus coberturas, lo cual incidirá fuertemente en el índice H' y J'.

El resultado obtenido para el índice de crecimiento δ = 0,02355 no es posible compararlo con los valores obtenidos en campañas anteriores, ya que la amplia diferencia de sus resultados es producto de la aplicación de metodologías distintas, lo cual será solucionado en campañas posteriores.

6. BIBLIOGRAFÍA

- Achiai, H., Ikei, H., Song, C., Kobayashi, M., Takashi, M., Takahide, K., . . . Yoshifumi, M. (2015).

 Physiological and Psychological Effects of a Forest Therapy Program on Middle-Age Females.

 International Journal of Environmental Research and Public Health(12), 15222-15323.

 doi:10.3390/ijerph12124984
- Adevi, A. A., & Lieberg, M. (2012). Stress rehabilitation through garden therapy: A caregiver perspective on factors considered most essential to the recovery process. *Urban Foresty & Urban Greening,* 11(1), 51-58.
- Armesto, J. V. (1996). Ecología de los bosques nativos de Chile. Editorial Universitaria.
- Armesto, J. V. (1996). Ecología de los bosques nativos de Chile. Editorial Universitaria.
- Bettini, V. (1997). Elementos de ecología urbana. Madrid: Editorial Trotta, S.A.
- C&H, & Donghi, S. (2018). *Informe estado de desarrollo e implementación de índice de crecimiento.*Viña del Mar: Inmobiliaria Las Salinas.
- Chorong Song, H. I. (2015). Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study. *International Journal Research Public Health*, 12(3), 2687-2699. doi:doi.org/10.3390/ijerph120302687
- Consuelo. (17 de ABRIL de 2109). *HUILO-HUILO*. Obtenido de https://huilohuilo.com/shinrin-yoku-la-ciencia-del-cerebro-y-el-cuerpo-bajo-los-efectos-del-bosque/
- Cosmos, F. (15 de mayo de 2019). *Hospital del Salvador de Valparaíso*. Obtenido de http://fundacioncosmos.cl/la-fundacion/
- Donghi, S. (2015). Fundamentos para incorporar las áreas silvestres como espacios urbanos. Inmobiliaria Las Salinas, Viña del Mar.
- Donghi, S. (2015). Fundamentos para incorporar las áreas silvestres como espacios urbanos. Viña del Mar.

- Donghi, S. (2015). Fundamentos para incorporar las áreas silvestres como espacios urbanos. Viña del Mar.
- Donghi, S. (2016). Revisión de flora vascular propuesta en Proyecto "Plan de Mejoramiento & Cultural Vegetal para calle Jorge Montt". Santiago.
- Donghi, S. (2016). Revisión de la flora vascular propuesta en el proyecto "Plan Mejoramiento & Cultura Vegetal para la Calle Jorge Montt". Santiago: Las Salinas.
- Donghi, S. (2017). Antecedentes científicos presentes en el Laboratorio Vegetal de Las Salinas. Viña del Mar.
- Elortegui, S., & Novoa, P. (2009). Orquídeas de la Región de Valparaíso. Valparaíso: Taller La Era.
- Hernández, J. (2000). Manual de Métodos y Criterios para la Evaluación y Monitoreo de la Flora y la Vegetación. Santiago: Facultad de Ciencias Forestales de la Universidad de Chile.
- Hinojosa, L., Pérez, M. F., Rougier, D., Villagrán, C., & Armesto, J. J. (2015). Legados históricos de la vegetación de bosques en Chile. En V. M. Orlando, *Ciencias Ecológicas 1983-2013* (págs. 123-138). Santiago: Editorial Universitaria.
- Juyoung Lee, Y. T.-J. (2014). Influence of Forest Therapy on Cardiovascular Relaxation in Young Adults. *Evidence-Based Complementary and Alternative Medicine*, 1-7.

 doi:dx.doi.org/10.1155/2014/834360
- Li, Q., Kobayashi, M., & Wakayama, Y. (2009). Effect of Phytoncide from Trees on Human Natural Killer Cell Function. *International Journal of Immunopathology and Pharmacoly*, 22(4), 951-959.
- Luebert, F., & Pliscoff, P. (2006). *Sinopsis bioclimática y vegetacional de Chile*. Santiago: Editorial Universitaria.
- Marticorena, C. y. (1985). Catálogo de la Flora Vascular de Chile. Gayana Botánica, 42(1-2), 1-157.
- Miranda, M., Reyes, L., Mashini, D., Misleh, D., & Bettancourt, P. (2015). *Valorización de los vínculos urbanos, rurales y silvestres en la generación de instrumentos de planificación territorial integrada*. Santiago: Pontificia Universidad Católica de Chile.

- Osaki, Mitsuru, Braimoh, Ademola, K., Nakagami, & Ken'Ichi. (2011). *Designing Our Future: Local Perpectives on Bioproductioin, Ecosisemas and Humanity (Sustainability Science Serie volume IV)* (Vol. IV). Tokio: UNU Press.
- Park, B. J., Tsunetsugu, Y., Kasetani, T., Kagawa, T., & Miyazaki, Y. (2009). The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan. *Environmental Health and Preventive Medicine*, 15:18.
- Park, S.-H., & Mattson, R. H. (2009). Therapeutic Influences of Plants in Hospital Rooms on Surgical Recovery. *American Society for Horticultural Science, 44*(1), 102-105. doi:10.21273/HORTSCI.44.1.102
- Pla, L. (2006). Biovidersidad: Interferencia basada en el índice de Shannon y la Riqueza. *Interciencia*.
- Pliscoff, P., & Luebert, F. (2006). Una nueva propuesta de clasificación de la vegetación de Chile y su aplicación en la evaluación del estado de conservación de los ecosistemas terrestres. *Revista Ambiente y Desarrollo, 22*(1), 41-45.
- Qing, L., Kobayashi, M., Michiko, I., Wakayama, Y., Inagaki, H., Katsumata, M., . . . Miyazaki, Y. (2009).

 Effect of Phytoncide from Trees on Human Natural Killer Cell Funtion. *International Juornal of Immunopathology and Pharmacology, 22*(4), 951-959.
- Song, C., Ikei, H., & Miyazaki, Y. (2016). Physiologicañ Effects of Nature Therapy: A review of Research in Japan. *International Juornal of envronmental Research and Public Health, 13*(781), 1-17. doi:10.3390/ijerph13080781
- Teillier, S. (2005). Nuestra Diversidad Biológica. Santiago.
- Wikum, D., & Shanholtzer G.F. (1978). Application of thr Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. *Environmental Management*, *2*, 323-329.

INF-EYP-002 - Error! Use the Home tab to apply Título, Título_Doc to the text that you want to appear here. Laboratorio Vegetal Las Salinas

Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

7. ANEXO 1

Tabla 1: valores de volumen vegetal por especie para cada parcela censada

Tabla	1: valores de volumen vegetal p									
N°	Nombre científico	P-2	P-3	P-4	P-5	P-6	P-7	P-8	P-9	P-10
/V	Northbre clefftifico	m³								
1	Alstroemeria pelegrina	0,00294	0,00000	0,00131	0,00000	0,00000	0,00000	0,00427	0,00000	0,00639
2	Baccharis macraei	0,25582	0,00000	0,13298	0,28617	0,12137	0,16207	0,41582	0,04909	0,10236
3	Bahia ambrosioides	0,00000	0,13380	0,00000	0,02557	0,03367	0,01505	0,06160	0,18121	0,06744
4	Cistanthe grandiflora	0,00930	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
5	Cryptocarya alba	0,00000	0,00000	0,00000	0,00009	0,00000	0,00000	0,00758	0,00000	0,00000
6	Eryngium paniculatum	0,00000	0,03797	0,11959	0,05948	0,03866	0,25451	0,07593	0,36653	0,29971
7	Escallonia pulvurulenta	0,00000	0,00000	0,18993	0,03992	0,00000	0,00000	0,01876	0,00000	0,00000
8	Flourencia thurifera	0,00000	0,00000	0,00000	0,14482	0,25194	0,00000	0,00000	0,00000	0,03963
9	Frankenia salina	0,00000	0,00295	0,00097	0,00120	0,00047	0,00121	0,00403	0,01536	0,00000
10	Fuchsia lycioides	0,00000	0,00000	0,00023	0,00000	0,07842	0,00000	0,00381	0,00000	0,00000
11	Haplopappus foliosus	0,16393	1,34900	0,00000	0,29059	0,21998	0,20366	0,00000	0,15266	0,22578
12	Heliotropium stenophyllum	0,00000	0,00000	0,00000	0,00000	0,00000	0,08432	0,00000	0,07138	0,00000
13	Leucocoryne coquimbensis	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
14	Lobelia excelsa	0,00000	0,00000	0,04218	0,00000	0,06428	0,07691	0,06223	0,00000	0,00000
15	Lobelia polyphylla	0,00000	0,00000	0,01186	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
16	Nolana crassulifolia	0,01684	0,00000	0,05535	0,00000	0,02454	0,00000	0,00000	0,01586	0,00000
17	Nolana pullally	0,03303	0,04440	0,06732	0,04514	0,00808	0,03830	0,02803	0,00014	0,01089
18	Oxalis gigantea	0,03109	0,00296	0,00000	0,00000	0,00000	0,00000	0,02640	0,00000	0,00490
19	Polyachyrus poppigii	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,02432	0,00000	0,00000
20	Puya sp	0,00043	0,00000	0,00729	0,00000	0,00000	0,00000	0,00000	0,00136	0,00579
21	Schinus latifolius	0,24965	0,16665	0,00000	0,03750	0,00000	0,09848	0,07355	0,01722	0,00000
22	Sisyrinchium arenarium	0,00000	0,00109	0,00000	0,00000	0,00000	0,00000	0,00051	0,00000	0,03127
23	Sisyrinchium chilense	0,00000	0,00000	0,00028	0,00083	0,00018	0,00013	0,00032	0,00028	0,00000
24	Sisyrinchium striatum	0,00000	0,02021	0,00000	0,02877	0,00000	0,00682	0,00000	0,01340	0,06738
25	Solanum maritimum	0,20719	0,00134	0,01945	0,10817	0,17441	0,02060	0,08841	0,03929	0,00000
26	Stipa caudata	0,00117	0,00149	0,00826	0,00664	0,02925	0,01898	0,01143	0,03302	0,02835
	Total	0,97139	1,76186	0,65700	1,07488	1,04526	0,98104	0,90699	0,95681	0,88988

Tabla 2: Determinación del volumen vegetal por cada individuo censado en cada parcela

PARC	N. científico	Individuo 1	Individuo 2	Individuo 3	Individuo 4	Individuo 5	Individuo 6	Individuo 7	Total
	Alstroemeria pelegrina	0,00051	0,00055	0,001881					0,00294
	Baccharis macraei	0,025541	0,122108	0,108166					0,25582
	Cistanthe grandiflora	0,009302							0,00930
	Haplopappus foliosus	0,0874	0,005986	0,070539					0,16393
PΑF	Nolana crassulifolia	0,016845							0,01685
PARCELA	Nolana pullally	0,005651	0,013569	0,003062	0,010745				0,03303
<u>></u> 2	Oxalis gigantea	0,031088							0,03109
	Puya sp	0,000431							0,00043
	Schinus latifolius	0,249653							0,24965
	Solanum maritimum	0,023037	0,002336	0,031789	0,08068	0,059316	0,053616	0,010027	0,20719
	Stipa caudata	0,000509	0,000391	0,000314	0,000325	0,000232			0,00177
	Bahia ambrosioides	0,073024	0,060162	0,000614					0,1338
	Eryngium paniculatum	0,018405	0,019564						0,037969
	Frankenia salina	0,002291	0,000654						0,002945
	Haplopappus foliosus	1,349000							1,349000
₽	Nolana pullally	0,034336	0,000668	0,002622	0,005668	0,000996	0,000112		0,044402
PARCELA	Oxalis gigantea	0,000321	0,002039	0,000604					0,002964
- 3	Schinus latifolius	0,166653							0,166653
	Sisyrinchium arenarium	0,000122	0,000968						0,00109
	Sisyrinchium striatum	0,020205							0,020205
	Solanum maritimum	0,001336							0,001336
	Stipa caudata	0,001491	0,00091	0,001061	0,002192	0,002117	0,000091	0,000732	0,008594
	Alstroemeria pelegrina	0,001093	0,000219						0,001312
	Baccharis macraei	0,132979							0,132979
	Eryngium paniculatum	0,034206	0,085387						0,119593
	Escallonia pulvurulenta	0,110588	0,079344						0,189932
	Frankenia salina	0,000965							0,000965
P	Fuchsia lycioides	0,000233							0,000233
PARCELA	Lobelia excelsa	0,042175							0,042175
Æ	Lobelia polyphylla	0,001464	0,010394						0,011858
4	Nolana crassulifolia	0,020317	0,004792	0,021648	0,002781	0,005812			0,05535
	Nolana pullally	0,049091	0,013742	0,004483					0,067316
	Puya sp	0,002956	0,002653	0,000659	0,001024				0,007292
	Sisyrinchium chilense	0,00002	0,000131	0,000132					0,000283
	Solanum maritimum	0,019453							0,019453
	Stipa caudata	0,001275	0,000689	0,000771	0,001307	0,00258	0,001272	0,000367	0,008261
⊳ ¬	Baccharis macraei	0,009726	0,001968	0,25775	0,002834	0,013895			0,286173

INF-EYP-002 - Error! Use the Home tab to apply Título, Título_Doc to the text that you want to appear here. Laboratorio Vegetal Las Salinas

	Bahia ambrosioides	0,025567							0,025567
	Cryptocarya alba	0,000094							0,000094
	Eryngium paniculatum	0,002215	0,010714	0,022539	0,009199	0,014811			0,059478
	Escallonia pulvurulenta	0,039921							0,039921
	Flourencia thurifera	0,060312	0,084504						0,144816
	Frankenia salina	0,000518	0,000681						0,001199
	Haplopappus foliosus	0,086678	0,055296	0,094058	0,014029	0,040524			0,290585
	Nolana pullally	0,003629	0,003778	0,017164	0,005193	0,015378			0,045142
	Schinus latifolius	0,037500							0,037500
	Sisyrinchium chilense	0,000428	0,000397						0,000825
	Sisyrinchium striatum	0,028768							0,028768
	Solanum maritimum	0,003842	0,000682	0,085186	0,018284	0,000177			0,108171
	Stipa caudata	0,000585	0,000045	0,00028	0,004191	0,001541			0,006642
	Baccharis macraei	0,121372							0,12137
	Bahia ambrosioides	0,033672							0,03367
	Eryngium paniculatum	0,024861	0,013795						0,03866
	Flourencia thurifera	0,251944							0,25194
	Frankenia salina	0,000327	0,000147						0,00047
PAR	Fuchsia lycioides	0,078419							0,07842
PARCELA	Haplopappus foliosus	0,106153	0,113823						0,21998
A 6	Lobelia excelsa	0,06428							0,06428
	Nolana crassulifolia	0,000884	0,007819	0,002533	0,002855	0,001229	0,009224		0,02454
	Nolana pullally	0,000318	0,000964	0,000464	0,006332				0,00808
	Sisyrinchium chilense	0,000183							0,00018
	Solanum maritimum	0,086006	0,088137	0,000264					0,17441
	Stipa caudata	0,002973	0,009743	0,000553	0,01213	0,003012	0,000841		0,02925
	Baccharis macraei	0,16207							0,16207
	Bahia ambrosioides	0,015046							0,015046
	Eryngium paniculatum	0,007674	0,207868	0,038968					0,25451
	Frankenia salina	0,000667	0,000538						0,001205
_	Haplopappus foliosus	0,057965	0,145696						0,203661
AR.	Heliotropium stenophyllum	0,084319							0,084319
ARCELA	Lobelia excelsa	0,004075	0,002576	0,002077	0,068183				0,076911
Α 7	Nolana pullally	0,001397	0,030356	0,002263	0,001397	0,000383	0,002506		0,038302
	Schinus latifolius	0,098477							0,098477
	Sisyrinchium chilense	0,000082	0,000052						0,000134
	Sisyrinchium striatum	0,005415	0,000228	0,001178					0,006821
	Solanum maritimum	0,01906	0,001544						0,020604
	Stipa caudata	0,00081	0,002472	0,008666	0,001041	0,00431	0,000303	0,001378	0,01898
! RC	Alstroemeria pelegrina	0,00082	0,001976	0,001419	0,000058				0,00427
	Baccharis macraei	0,11566	0,188237	0,111923					0,41582

INF-EYP-002 - Error! Use the Home tab to apply Título, Título_Doc to the text that you want to appear here. Laboratorio Vegetal Las Salinas

	Bahia ambrosioides	0,061603							0,06160
	Cryptocarya alba	0,00243	0,001903	0,000704	0,00254				0,00758
	Eryngium paniculatum	0,072388	0,003538						0,07593
	Escallonia pulvurulenta	0,018762							0,01876
	Frankenia salina	0,003155	0,00048	0,000391					0,00403
	Fuchsia lycioides	0,003814							0,00381
	Lobelia excelsa	0,021979	0,027189	0,013064					0,06223
	Nolana pullally	0,002584	0,024955	0,000488					0,02803
	Oxalis gigantea	0,002627	0,02377						0,02640
	Polyachyrus poppigii	0,024324							0,02432
	Schinus latifolius	0,073548							0,07355
	Sisyrinchium arenarium	0,000507							0,00051
	Sisyrinchium chilense	0,000149	0,000166						0,00032
	Solanum maritimum	0,080147	0,002602	0,004336	0,00132				0,08841
	Stipa caudata	0,001915	0,001009	0,001099	0,00363	0,002109	0,001077	0,000589	0,01143
	Baccharis macraei	0,049092							0,049092
	Bahia ambrosioides	0,018879	0,094215	0,015147	0,052967				0,181208
	Eryngium paniculatum	0,024661	0,011299	0,137337	0,193237				0,366534
	Frankenia salina	0,015363							0,015363
	Haplopappus foliosus	0,069005	0,083659						0,152664
P	Heliotropium stenophyllum	0,071381							0,071381
PARCELA	Nolana crassulifolia	0,015859							0,015859
Ē	Nolana pullally	0,000142							0,000142
9	Puya sp	0,000508	0,000852						0,00136
	Schinus latifolius	0,017217							0,017217
	Sisyrinchium chilense	0,000283							0,000283
	Sisyrinchium striatum	0,001602	0,009303	0,001203	0,00129				0,013398
	Solanum maritimum	0,019729	0,01956						0,039289
	Stipa caudata	0,009248	0,006525	0,014094	0,002306	0,000543	0,000306		0,033022
	Alstroemeria pelegrina	0,001823	0,004565						0,006388
	Baccharis macraei	0,102361							0,102361
	Bahia ambrosioides	0,026081	0,041358						0,067439
	Eryngium paniculatum	0,238884	0,01141	0,049413					0,299707
PA	Flourencia thurifera	0,039633							0,039633
PARCELA	Haplopappus foliosus	0,020941	0,023341	0,013772	0,035916	0,015651	0,057561	0,058593	0,225775
	Nolana pullally	0,005765	0,001469	0,00366					0,010894
10	Oxalis gigantea	0,00075	0,002279	0,000347	0,001519				0,004895
	Puya sp	0,005785							0,005785
	Sisyrinchium arenarium	0,000019	0,000076	0,003937	0,002604	0,024637			0,031273
	Sisyrinchium striatum	0,029508	0,001638	0,001327	0,034908				0,067381
	Stipa caudata	0,010152	0,012461	0,003148	0,001644	0,000943			0,028348

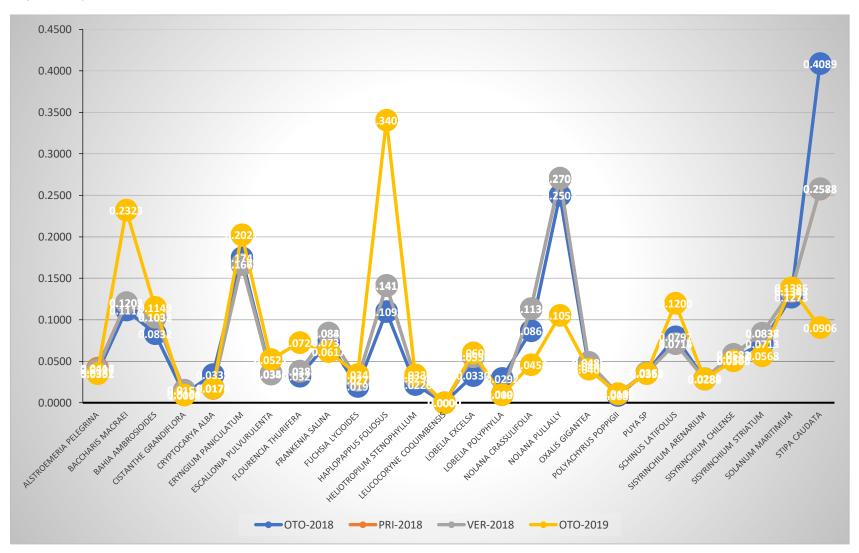
Tabla 3: Valor de Importancia (VI) para cada especie presente en el LV

N°	N. científico	P-2	P-3	P-4	P-5	P-6	P-7	P-8	P-9	P-10	f	%f	f relat	cobs	cobs	V.I.
		m ³	m³				abs	relat								
11	Haplopappus foliosus	0,16393	1,34900	0,00000	0,29059	0,21998	0,20366	0,00000	0,15266	0,22578	7	77,8%	0,05882	2,61	0,2818	0,3407
2	Baccharis macraei	0,25582	0,00000	0,13298	0,28617	0,12137	0,16207	0,41582	0,04909	0,10236	8	88,9%	0,06723	1,53	0,1650	0,2323
6	Eryngium paniculatum	0,00000	0,03797	0,11959	0,05948	0,03866	0,25451	0,07593	0,36653	0,29971	8	88,9%	0,06723	1,25	0,1355	0,2027
25	Solanum maritimum	0,20719	0,00134	0,01945	0,10817	0,17441	0,02060	0,08841	0,03929	0,00000	8	88,9%	0,06723	0,66	0,0713	0,1385
21	Schinus latifolius	0,24965	0,16665	0,00000	0,03750	0,00000	0,09848	0,07355	0,01722	0,00000	6	66,7%	0,05042	0,64	0,0696	0,1200
3	Bahia ambrosioides	0,00000	0,13380	0,00000	0,02557	0,03367	0,01505	0,06160	0,18121	0,06744	7	77,8%	0,05882	0,52	0,0561	0,1149
17	Nolana pullally	0,03303	0,04440	0,06732	0,04514	0,00808	0,03830	0,02803	0,00014	0,01089	9	100,0%	0,07563	0,28	0,0298	0,1054
26	Stipa caudata	0,00117	0,00149	0,00826	0,00664	0,02925	0,01898	0,01143	0,03302	0,02835	9	100,0%	0,07563	0,14	0,0150	0,0906
8	Flourencia thurifera	0,00000	0,00000	0,00000	0,14482	0,25194	0,00000	0,00000	0,00000	0,03963	3	33,3%	0,02521	0,44	0,0472	0,0724
9	Frankenia salina	0,00000	0,00295	0,00097	0,00120	0,00047	0,00121	0,00403	0,01536	0,00000	7	77,8%	0,05882	0,03	0,0028	0,0617
14	Lobelia excelsa	0,00000	0,00000	0,04218	0,00000	0,06428	0,07691	0,06223	0,00000	0,00000	4	44,4%	0,03361	0,25	0,0266	0,0602
24	Sisyrinchium striatum	0,00000	0,02021	0,00000	0,02877	0,00000	0,00682	0,00000	0,01340	0,06738	5	55,6%	0,04202	0,14	0,0148	0,0568
7	Escallonia pulvurulenta	0,00000	0,00000	0,18993	0,03992	0,00000	0,00000	0,01876	0,00000	0,00000	3	33,3%	0,02521	0,25	0,0269	0,0521
23	Sisyrinchium chilense	0,00000	0,00000	0,00028	0,00083	0,00018	0,00013	0,00032	0,00028	0,00000	6	66,7%	0,05042	0,00	0,0002	0,0506
16	Nolana crassulifolia	0,01684	0,00000	0,05535	0,00000	0,02454	0,00000	0,00000	0,01586	0,00000	4	44,4%	0,03361	0,11	0,0122	0,0458
18	Oxalis gigantea	0,03109	0,00296	0,00000	0,00000	0,00000	0,00000	0,02640	0,00000	0,00490	4	44,4%	0,03361	0,07	0,0071	0,0407
1	Alstroemeria pelegrina	0,00294	0,00000	0,00131	0,00000	0,00000	0,00000	0,00427	0,00000	0,00639	4	44,4%	0,03361	0,01	0,0016	0,0352
20	Puya sp	0,00043	0,00000	0,00729	0,00000	0,00000	0,00000	0,00000	0,00136	0,00579	4	44,4%	0,03361	0,01	0,0016	0,0352
10	Fuchsia lycioides	0,00000	0,00000	0,00023	0,00000	0,07842	0,00000	0,00381	0,00000	0,00000	3	33,3%	0,02521	0,08	0,0089	0,0341
12	Heliotropium stenophyllum	0,00000	0,00000	0,00000	0,00000	0,00000	0,08432	0,00000	0,07138	0,00000	2	22,2%	0,01681	0,16	0,0168	0,0336
22	Sisyrinchium arenarium	0,00000	0,00109	0,00000	0,00000	0,00000	0,00000	0,00051	0,00000	0,03127	3	33,3%	0,02521	0,03	0,0036	0,0288
5	Cryptocarya alba	0,00000	0,00000	0,00000	0,00009	0,00000	0,00000	0,00758	0,00000	0,00000	2	22,2%	0,01681	0,01	0,0008	0,0176
19	Polyachyrus poppigii	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,02432	0,00000	0,00000	1	11,1%	0,00840	0,02	0,0026	0,0110
15	Lobelia polyphylla	0,00000	0,00000	0,01186	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1	11,1%	0,00840	0,01	0,0013	0,0097
4	Cistanthe grandiflora	0,00930	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1	11,1%	0,00840	0,01	0,0010	0,0094
13	Leucocoryne coquimbensis	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0	0,0%	0,00000	0,00	0,0000	0,0000

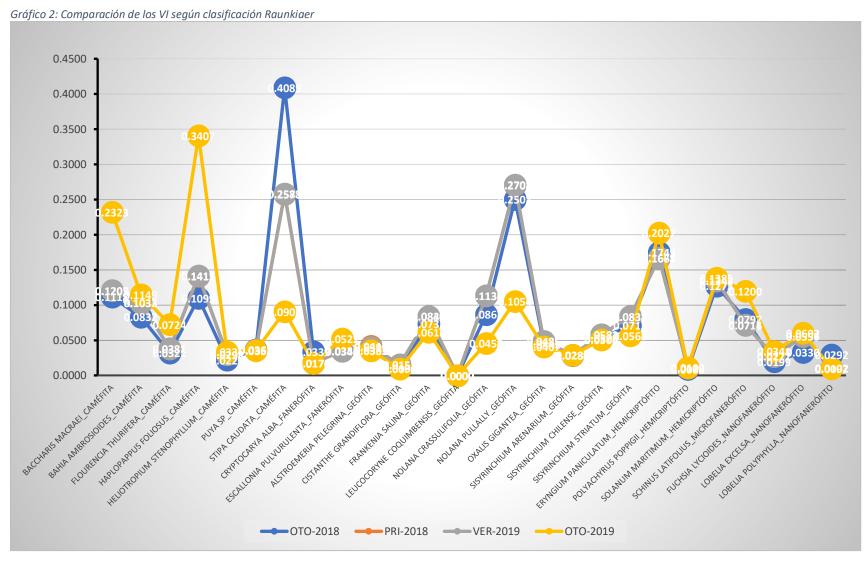
Tabla 4: Comparación de los índices de biodiversidad utilizados para el período de verano 2019 y otoño 2019

		P-2	P-3	P-4	P-5	P-6	P-7	P-8	P-9	P-10
OTO-2019	ni	0,97	1,76	0,66	1,07	1,05	0,98	0,91	0,96	0,89
	N	11	11	14	14	13	13	17	14	12
	H'	2,45	1,28	2,77	2,84	2,96	2,90	2,78	2,67	2,70
	H' _{max}	3,46	3,46	3,81	3,81	3,70	3,70	4,09	3,81	3,58
	J	0,71	0,37	0,73	0,75	0,80	0,78	0,68	0,70	0,75
VER-2018-19	ni	19,02	26,11	24,81	30,93	22,42	32,13	27,96	28,59	40,91
	N	11	11	14	14	13	13	17	14	12
	H'	2,10	2,33	2,35	2,68	2,56	2,61	2,89	2,42	2,55
	H'max	3,46	3,46	3,81	3,81	3,70	3,70	4,09	3,81	3,58
	J	0,61	0,67	0,62	0,70	0,69	0,70	0,71	0,64	0,71

Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

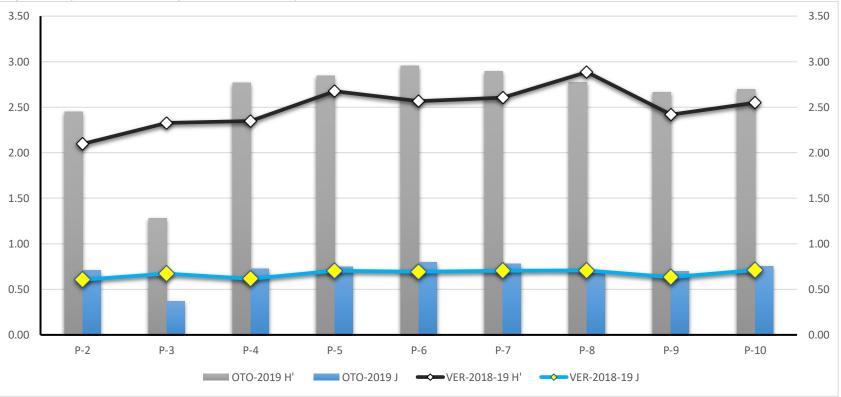

Tabla 5: Comparación de los volúmenes obtenidos en las campañas de verano y otoño del 2019

,	abia 5: Comparación de los	P.		P.		P-		<i>P</i> .			-6	p.	·7	P-	-8	p.	-9	P-:	10
	m2 Parc	41,	,89	40,	68	41,	46	40,	,56	41	,03	42,	35	42,	,00	44,	,79	42,	,47
	FECHA	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19	ver-19	oto-19
N°	N. científico	m ³	m³	m³	m³	m³	m³	m³	m³	m³	m ³	m³							
1	Alstroemeria pelegrina	0,049	0,003	0,000	0,000	0,038	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,095	0,004	0,000	0,000	0,049	0,006
2	Baccharis macraei	2,664	0,256	0,000	0,000	1,976	0,133	3,217	0,286	0,940	0,121	1,047	0,162	7,544	0,416	1,044	0,049	1,070	0,102
3	Bahia ambrosioides	0,000	0,000	2,962	0,134	0,000	0,000	0,864	0,026	0,614	0,034	0,276	0,015	0,748	0,062	4,185	0,181	1,689	0,067
4	Cistanthe grandiflora	1,746	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
5	Cryptocarya alba	0,000	0,000	0,000	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,063	0,008	0,000	0,000	0,000	0,000
6	Eryngium paniculatum	0,000	0,000	5,803	0,038	6,316	0,120	9,741	0,059	3,394	0,039	12,900	0,255	4,442	0,076	13,615	0,367	14,171	0,300
7	Escallonia pulvurulenta	0,000	0,000	0,000	0,000	3,784	0,190	0,675	0,040	0,000	0,000	0,000	0,000	0,539	0,019	0,000	0,000	0,000	0,000
8	Flourencia thurifera	0,000	0,000	0,000	0,000	0,000	0,000	2,360	0,145	2,743	0,252	0,000	0,000	0,000	0,000	0,000	0,000	0,851	0,040
9	Frankenia salina	0,000	0,000	0,090	0,003	0,040	0,001	0,100	0,001	0,045	0,000	0,075	0,001	0,162	0,004	0,400	0,015	0,000	0,000
10	Fuchsia lycioides	0,000	0,000	0,000	0,000	0,114	0,000	0,000	0,000	0,517	0,078	0,000	0,000	0,174	0,004	0,000	0,000	0,000	0,000
11	Haplopappus foliosus	2,268	0,164	7,940	1,349	0,000	0,000	2,634	0,291	2,176	0,220	1,859	0,204	0,000	0,000	2,366	0,153	5,279	0,226
12	Heliotropium stenophyllum	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,709	0,084	0,000	0,000	1,626	0,071	0,000	0,000
13	Leucocoryne coquimbensis	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	Lobelia excelsa	0,000	0,000	0,000	0,000	2,758	0,042	0,000	0,000	3,360	0,064	5,224	0,077	3,396	0,062	0,000	0,000	0,000	0,000
15	Lobelia polyphylla	0,000	0,000	0,000	0,000	0,810	0,012	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
16	Nolana crassulifolia	1,657	0,017	0,000	0,000	3,136	0,055	0,000	0,000	1,986	0,025	0,000	0,000	0,000	0,000	1,012	0,016	0,000	0,000
17	Nolana pullally	2,246	0,033	0,824	0,044	2,401	0,067	2,738	0,045	0,821	0,008	1,244	0,038	1,573	0,028	0,084	0,000	0,135	0,011
18	Oxalis gigantea	0,540	0,031	0,165	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,236	0,026	0,000	0,000	0,969	0,005
19	Polyachyrus poppigii	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,351	0,024	0,000	0,000	0,000	0,000
20	Puya sp	0,012	0,000	0,000	0,000	0,294	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,077	0,001	0,070	0,006
21	Schinus latifolius	2,078	0,250	1,290	0,167	0,000	0,000	2,511	0,038	0,000	0,000	3,404	0,098	3,132	0,074	0,361	0,017	0,000	0,000
22	Sisyrinchium arenarium	0,000	0,000	0,029	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,055	0,001	0,000	0,000	0,028	0,031
23	Sisyrinchium chilense	0,000	0,000	0,000	0,000	0,143	0,000	0,048	0,001	0,062	0,000	0,085	0,000	0,513	0,000	0,146	0,000	0,000	0,000
24	Sisyrinchium striatum	0,000	0,000	0,640	0,020	0,000	0,000	0,141	0,029	0,000	0,000	0,442	0,007	0,000	0,000	0,303	0,013	12,276	0,067
25	Solanum maritimum	4,672	0,207	0,452	0,001	0,814	0,019	4,331	0,108	3,346	0,174	0,575	0,021	1,243	0,088	1,408	0,039	0,000	0,000
26	Stipa caudata	1,092	0,001	5,918	0,001	2,185	0,008	1,561	0,007	2,419	0,029	3,289	0,019	1,696	0,011	1,966	0,033	4,328	0,028
	TOTAL	19,024	0,971	26,112	1,762	24,808	0,657	30,928	1,075	22,423	1,045	32,129	0,981	27,963	0,907	28,594	0,957	40,915	0,890

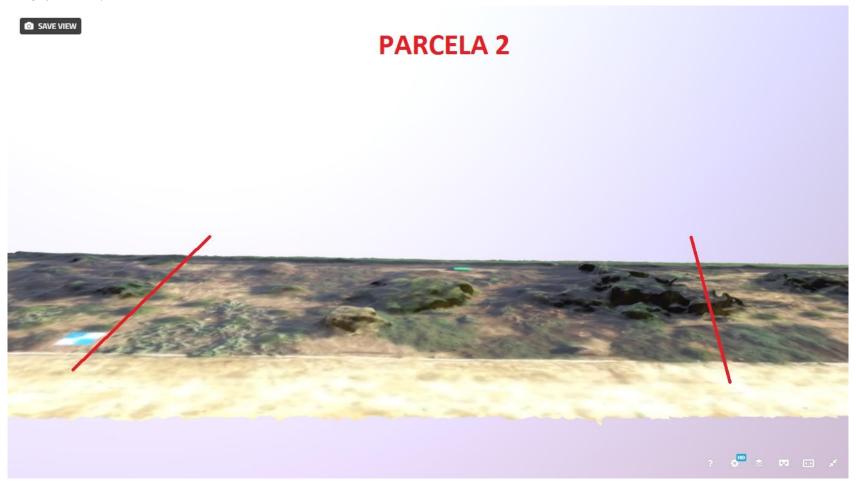

Tabla 6: Índice de crecimiento alcanzado en base al volumen vegetal durante los controles realizados

		VERANO-19		OTOÑO-19	
Parcelas	m² totales /	m3 cbtra	qi	m3 cbtra	qi
censadas	Parcelas	vegetal		vegetal	
P-2	41,89	19,0239	0,0504	0,971392	0,0026
P-3	40,68	26,1123	0,0692	1,761855	0,004
P-4	41,46	24,8081	0,0658	0,657002	0,001
P-5	40,56	30,9283	0,0820	1,074881	0,002
P-6	41,03	22,4232	0,0594	1,045257	0,002
P-7	42,35	32,1295	0,0852	0,98104	0,002
P-8	42,00	27,9626	0,0741	0,906985	0,002
P-9	44,79	28,5943	0,0758	0,956812	0,002
P-10	42,47	40,9146	0,1085	0,889879	0,002
TOTAL	377,23	252,8968	0,6704	9,2451	0,024
N		26	i	26	i
N encontr		26	i	26	i
δ		0,67	04	0,02	45

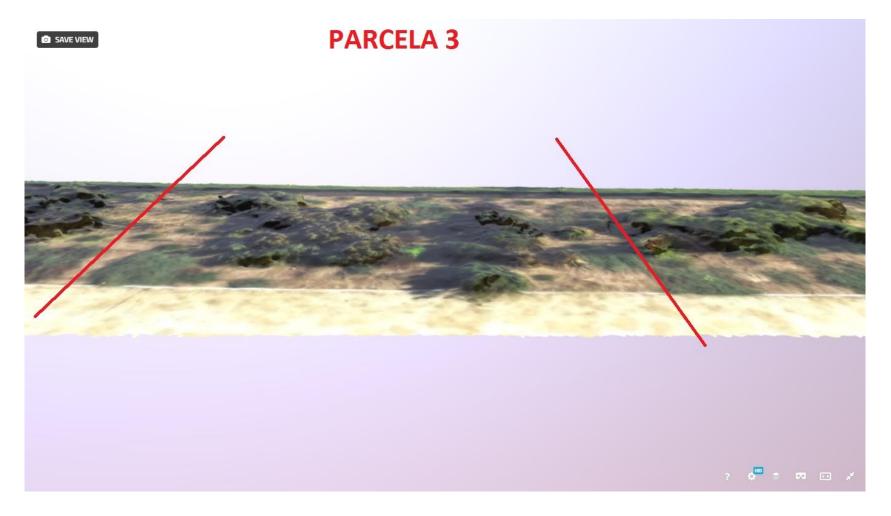
Gráfico 1: Comparación de los VI en los distintos controles estacionales realizados



INF-EYP-002 - Error! Use the Home tab to apply Título, Título_Doc to the text that you want to appear here. Laboratorio Vegetal Las Salinas



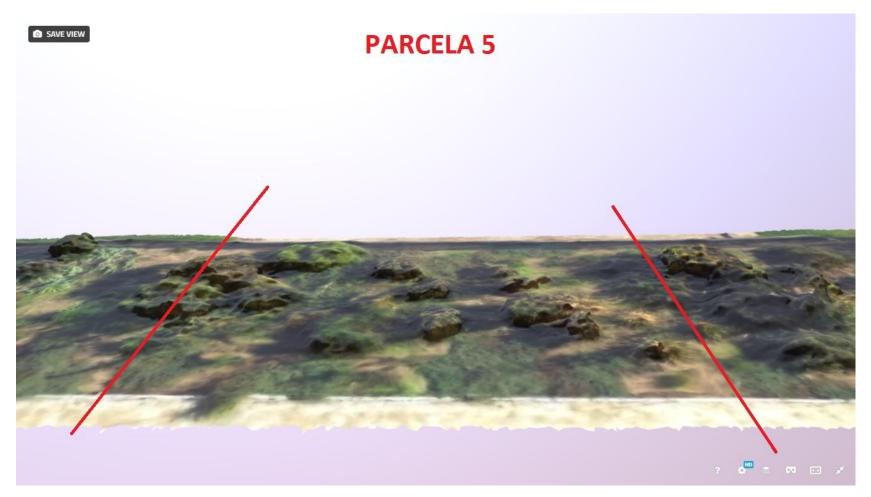
INF-EYP-002 - Error! Use the Home tab to apply Título, Título_Doc to the text that you want to appear here. Laboratorio Vegetal Las Salinas



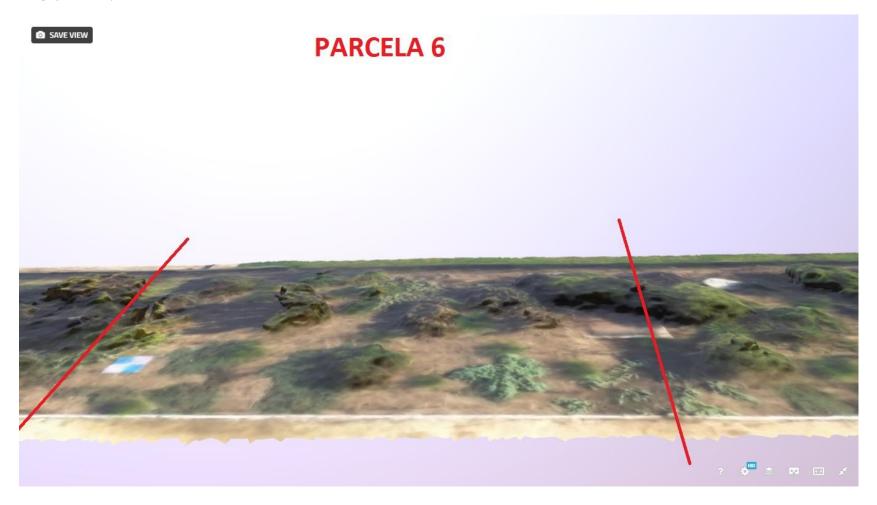
Fotografía 1: MDE para P-2

Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

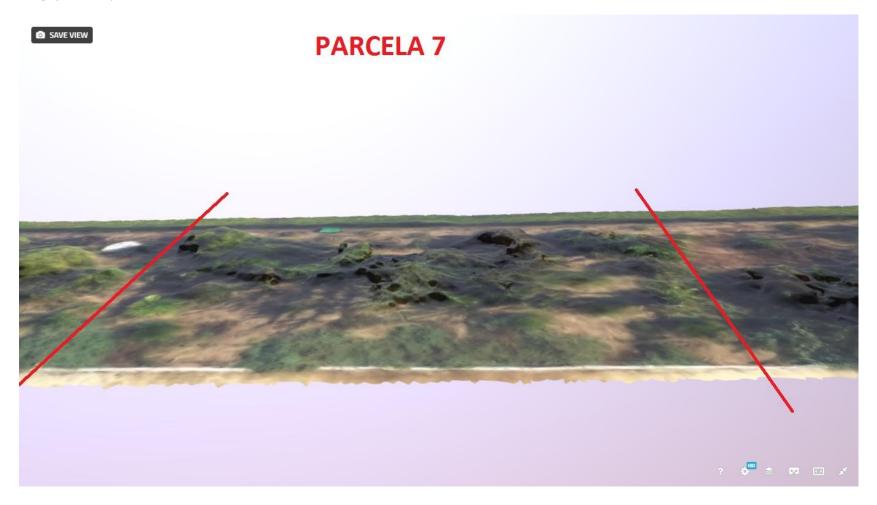
Fotografía 2: MDE para P-3


Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

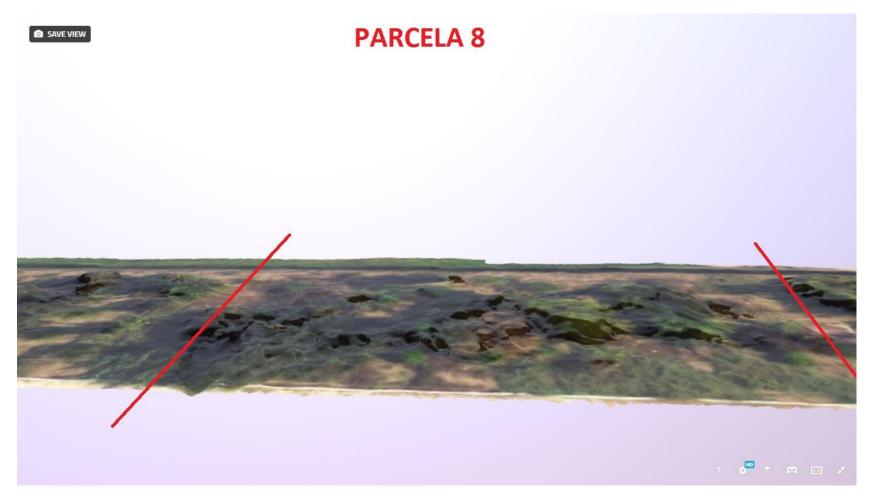
Fotografía 3: MDE para P-4


Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

Fotografía 4: MDE para P-5


Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

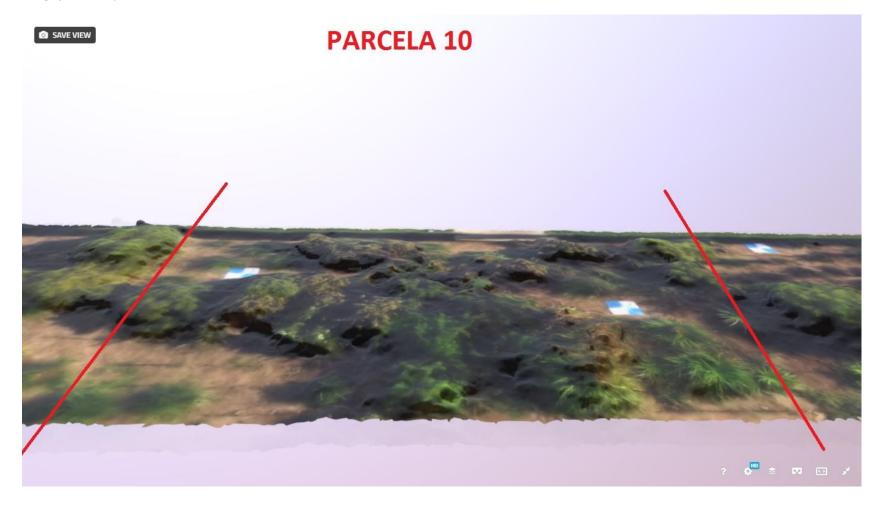
Fotografía 5: MDE para P-6


Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

Fotografía 6: MDE para P-7

Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

Fotografía 7: MDE para P-8


Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

Fotografía 8: MDE para P-9

Error! Use the Home tab to apply Título 1 to the text that you want to appear here.

Fotografía 9: MDE para P-10

